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SUMMARY 

Semi-Lagrangian methods are now perhaps the most widely researched algorithms in connection with 
atmospheric flow simulation codes. In order to investigate their applicability to  hydraulic problems, cubic 
Hermite polynomials are used as the interpolant technique. The main advantage of such an approach is 
the use of information from only two points. The derivatives are calculated and limited so as to produce 
a shape-preserving solution. The lack of conservation of semi-Lagrangian methods, however, is widely 
regarded as a serious disadvantage for hydraulic studies, where non-linear problems in which shocks may 
develop are often encountered. In this work we describe how to make the scheme conservative using an 
FCT approach. The method proposed does not guarantee an unconditional shock-capturing ability but 
is able to correctly reproduce the discontinuous flows common in open channel simulation without any 
shock-fitting algorithm. It is a cheap way to improve existing 1D semi-Lagrangian codes and allows stable 
calculations beyond the usual C F L  limits. A basic semi-Lagrangian method is presented that provides 
excellent results for a linear problem; the new techniques allow us to tackle non-linear cases without unduly 
degrading the accuracy for the simpler problems. Two one-dimensional hydraulic problems are used as 
test cases, water hammer and dam break. In the latter case, because of the non-linearity, special care is 
needed with the low-order solution and we show the advantages of using Leveque’s large-time step version 
of Roe’s scheme for this purpose. 

K E Y  WORDS Method of characteristics Polynomial interpolation Monotonicity Recovery of conservation 

1. INTRODUCTION 

Semi-Lagrangian-based methods, or interpolation methods as they are sometimes called in the 
hydraulics literature, have proved very successful in computational fluid dynamics (CFD), mainly 
in connection with atmospheric Aow prediction where they have gained widespread acceptance.‘ 
They can be described as a technique using a fixed grid that essentially combines the method 
of characteristics with a suitable interpolating procedure. The basic idea of following characteris- 
tics backwards in time in order to pick the correct information from the past comes from very 
early works in CFD.’ Semi-Lagrangian methods can be distinguished from one another by the 
interpolant used at the foot of the characteristic. 

Traditionally, the finite difference version of the method of characteristics has been applied 
with success to hydraulic transients in pipes3 and  river^.^,^ It is known, nevertheless, that the 
use of a linear interpolation between two computational points sometimes produces an excessive 
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amount of attenuation. The numerical damping can be reduced by using a more refined 
interpolation algorithm which will determine the spatial accuracy of the scheme. In recent years 
various higher-order interpolants have been proposed. Some of them use four or more 
computational points to construct cubic, which can actually be shown to be equivalent to the 
finite element Lagrange Galerkin method6 with linear elements,’ or quintic polynomials. As an 
alternative approach, the use of no more than two points is possible if the spatial derivatives of 
the polynomial at these points are supplied in order to provide enough information to determine 
the polynomial. 

Higher-order interpolations may lead, however, to spurious numerical oscillations in regions 
of steep gradients of the interpolated variables. Special limiting or shape-preserving techniques 
are then required.’ Moreover, semi-Lagrangian methods are not conservative, except in trivial 
cases, and hence are inefficient and inaccurate when discontinuities occur in the solution. The 
usual way to cope with this disadvantage has been the addition of a shock-fitting algorithm 
connecting the regions of smooth flow.’ 

In this paper we shall concern ourselves with the performance of shape-preserving Hermite 
cubic polynomials as the interpolant technique when implementing a semi-Lagrangian scheme 
to solve the 1D shallow water equations. We will also consider the applicability and limitations 
of new ways of coping with the lack of the important property of conservation. 

Below we shall briefly describe the semi-Lagrangian algorithm and the implementation of 
shape-preserving solutions using Hermite polynomials. In Section 2 a technique to recover 
conservation will be introduced for the scalar case as well as for systems of equations. It will 
be pointed out that some difficulties can be met when applying it to a system of equations. In 
Section 3 an extension will be proposed to overcome this difficulty. 

To demonstrate its effectiveness and to facilitate this study, two tests problems from the 
hydraulics literature have been selected and several numerical results are shown. 

1 . 1  Test Problems 

Case 1 : dam breakflow. Even though the strategy to recover conservation in semi-Lagrangian 
schemes is not intended to produce a method able to cope with strong discontinuities, as in 
other shock-capturing methods, and our primary interests are in river and pipe flows, where 
discontinuities are generally weaker, the idealized dam break problem was chosen because it is 
a classical example of non-linear flow with shocks to test conservation in numerical schemes 
and at the same time has an analytical solution. 

This problem is generated by the one-dimensional shallow water equations given by 

- + -  - + g l ,  =o,  
aQ at ax a (Q2 A ) 

a A  aQ -+ -=o ,  
at ax 

where A is the wetted cross-sectional area, Q is the discharge and I ,  represents a hydrostatic 
pressure force term. For the ideal case of a flat, frictionless channel of unit width and 
rectangular cross-section we have A = h, h being the water depth, and I ,  = igh’,  g being the 
acceleration due to gravity. 

The initial conditions are 

h, ifx 6 L/2, 
h, ifx > L/2, 

Q(x, 0) = 0. h(x, 0) = 
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Calculation times were used so as to avoid interaction with the extremities of the channel. 
The boundary conditions are then trivial. 

Case 2: the water hammer problem. The linearized water hammer problem, owing to its 
popularity as an example in the related literature, was selected as a means to compare the 
performance of the monotone Hermite cubic interpolation against other proposed semi- 
Lagrangian schemes. It was also used to determine the extent of the effect caused by the 
recovery of conservation. Being a linear and simplified problem, it was suitable in order to 
focus attention on the adaptation of the algorithm to systems of equations. Following the 
dimensionless formulation of Sibetheros and Holley," for instance, this second test problem 
deals with the solution of the linear system of equations 

a H  av av a H  
at ax a t  ax  - + u - = o ,  - + a - = O ,  

with the initial conditions 

H ( x ,  0) = 0, V(X, 0)  = 1 

and the boundary conditions 

H(0,  t )  = 0, V ( L ,  t )  = 0, 

where 

a = J(gho). 

The dimensionless variables are 

where u is the velocity, h is the specific head and subscripts zero refer to the undisturbed values. 

2. BASIC SEMI-LAGRANGIAN SCHEMES 

In this section we review the semi-Lagrangian solution to the scalar problem 

u,+a(x, t ) . V u  = 0, 

which describes the advection of u(x, t) .  The invariance of a scalar quantity 

4x7 t )  = 4x0, to)  

along a trajectory 

is common to a wide variety of fluid dynamics topics. The aim is to obtain a good approximation 
of the function u(x, t) at all the xi-points of a fixed discrete grid, assuming that u and a are 
known everywhere in the grid at an earlier time to. 

In general, two distinct steps are involved. The first step determines the departure points xo 
of the trajectories arriving at xi from the past time through approximate solutions of (2). The 
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second step is concerned with the way of calculating the value of u at xo, which in general will 
not coincide with a grid point, i.e. the way to interpolate u at xo. 

At this stage it is worth stressing a first and important advantage offered by the semi- 
Lagrangian approach. The usual Courant-Friedrichs-Lewy (CFL) restriction for explicit 
schemes' is no longer a limitation for the stability of the semi-Lagrangian method. Instead, it 
is replaced by a weaker condition which relates the stability of the resulting scheme to its 
variability along trajectories and which, for sufficiently smooth flows, permits CFL numbers 
greatly exceeding unity, thus saving computational effort and improving accuracy away from 
shocks or regions of strong gradients in the viscous case.' Another important advantage of the 
semi-Lagrangian technique, which we do not make use of in this paper, is the fact that it is 
genuinely multidimensional. 

The first of the two steps referred to above can be achieved in principle by means of any ODE 
solver." In the particular case of linear advection the exact trajectories are known and used, 
rendering this step trivial. In the case of a non-linear problem, e.g. the complete shallow water 
equations, the characteristics will not be straight lines, but Euler's forward difference method 
can be used giving O(At) time accuracy. This can be increased to O(At') if an iterative solution 
of the implicit midpoint rule, common in the meterology literature, is used instead.' Un- 
fortunately, that will still not be accurate enough in the neighbourhood of strong shocks or 
discontinuities. For these problems we cannot achieve any improvement by using increasingly 
higher-order-accurate methods. A simple way to see how the more classical techniques such as 
Runge-Kutta fail is to consider a dam break problem where the downstream side is a dry bed 
and to calculate what happens to the trajectories in this extreme case. Clearly, some sort of 
implicitness would be beneficial to solve what is now a stiff ODE. A definite improvement is 
obtained in that case if some forward-in-time information on the slopes of the trajectories is 
introduced in the Euler procedure. It introduces a certain implicitness and is still efficient in 
smooth regions. Backward difference formulae are often used to solve stiff ODE systems'' and 
may have something to offer here as well. This question is something we hope to return to in 
a later paper. 

Having found a departure point for the trajectory, an adequate interpolation algorithm is 
necessary and the question of which one is the best suited remains unanswered. 

Cubic interpolation seems to have become the most popular in the context of semi-Lagrangian 
schemes, being more accurate than linear interpolation (which in fact can be recast as a first-order 
upwind difference method) and less dispersive than quadratic interpolation (which is the 
equivalent of the second-order Lax-Wendroff explicit scheme). l 2  Quintic interpolations have 
also been proposed but have not gained the same widespread use as cubic ones and will not be 
considered in this work. 

Holly and Pre i~smann '~  showed that using more than two points to construct a cubic 
polynomial introduced excessive numerical error due to the physical displacement of the points 
considered. They constructed cubic and quintic Hermite interpolation polynomials using only 
two computational points, with the extra information needed coming from the derivatives at 
those points. However, an auxiliary problem for the first derivative had to be solved. To avoid 
that difficulty, Schohl and HollyI2 proposed the use of cubic spline interpolation and concluded 
that the two schemes are of similar accuracy for a contaminant advection problem. 

Sibetheros and Holley l o  compared the performances of various types of cubic spline interpola- 
tions for a linearized water hammer problem and achieved monotonicity by using a taut cubic 
spline polynomial which proved adequate for that test case. 

Rasch and Wil l iam~on '~  were concerned with shape-preserving high-order interpolants as a 
correct way to improve the already advantageous semi-Lagrangian methods. Monotonicity was 
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introduced via constraints or restrictions on the derivative estimates at the endpoints of an 
interval. This approach is used in the present work. Hermite cubic polynomials have been chosen 
for their simplicity, accuracy and the important advantage of allowing the calculation of the 
derivatives from the solution itself. 

A Hermite cubic polynomial used to provide the interpolated value of a functionf(x) defined 
in a discrete mesh {xi. i = 1, N } ,  Axi = xi+  - xi, at a point xp, xi I xp I xi+ 1,  can be expressed 
as 

p(x,) = c,(xp - Xi)3 + c2(xp - Xi)2 + c3(xp - XI) + c4, 

where the coefficients are 

-di+l - 2di + 3Ai 
c1 = - 7 c2 = - c3 = di, c4 = f(Xi) = f;. 

d i + l  + di - 2Ai 
Ax; Axi 

These coefficients are functions of the discrete slopes Ai defined as 

and of the space derivatives off at the nodes, di, which can be e~ t ima ted '~  in the case of a 
uniform mesh spacing Ax by 

for a general interior point. 

both sides, namely 
Slightly different formulae are applied to the points which do not have two neighbours on 

25A1 - 23A2 + 13A3 - 3A4 
12 

3A1 + 13A2 - 5A3 + A4 
12 9 d2 = dl = 9 

Similar formulae can be derived for the non-uniform case. 

condition on the value of the derivatives in the form 
The monotonicity of this cubic interpolant can be enforced by first imposing a necessary 

sign(di) = sign(Ai) = sign(di+ Ai # 0, 
di = d i + l  = 0, Ai = 0, 

(3) 

and then limiting their values16 in the manner 

di = sign(di) min((d,l, 13Ai-11, 13Ail). (4) 

As explained by Rasch and Wil l iam~on, '~  (3) and (4) are more than a monotonicity constraint; 
they are also a form of convexity or positivity constraint in the sense that they control overshoots 
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on the interval next to local extrema. Being actually non-monotonic in such regions, they prevent 
oscillations at the edge of flat regions. This can be useful in avoiding clipping of solutions and 
no new extrema are introduced. 

Although there is an inevitable sacrifice of accuracy in the numerical result when monotonicity 
is sought, the above technique gives satisfactory results for many kinds of problems at a minimum 
computational cost. 

As an illustration, Figures 1 and 2 display some results from the solution of test case 2 with 
the described monotone Hermite cubic semi-Lagrangian method. They have been computed on 
two different grids of N = 13 and 37 points with CFL= 1.5. In all cases the continuous line is 
used as a reference and it represents the solution using CFL= 1. 

The upper parts of these figures show the temporal variation of the head H ( L , t )  at the 
downstream end. The corresponding (spatial) longitudinal head profiles for four dimensionless 
times (0.125, 1.125,2.125 and 5.125) are shown in the lower parts of the same figures. They have 
been arranged so that the thinner the line is, the greater the time it stands for. It can be seen 
that no oscillations are present in the solutions and that the accuracy increases with the number 
of points. These results compare very favourably with those published elsewhere." 

Unfortunately, this method is not able to give satisfactory results when dealing with open 
channel flow problems in which discontinuities such as bores or hydraulic jumps may occur. 
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Figure 1. Monotone cubic interpolation. N = 13, CFL = 1.5. Upper: downstream head variation with time. Lower: 
head profiles at various times 
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Figure 2. Monotone cubic interpolation. N = 37, CFL = 1.5. Upper: downstream head variation with time. Lower: 
head profiles at various times 

This is a consequence of the non-linearity of the equations and hence of the error introduced 
when trying to solve the ODES governing the trajectories through the shock. 

The numerical results often display a good-looking shape which might be misleading if no 
exact solution were available. In fact, the solution on both sides of the discontinuity, although 
monotone, is erroneous and so is the shock speed. 

Figures 3 and 4 are examples of this kind of behaviour obtained through the solution of test 
case 1 for two different values of the initial height ratio hL : h R .  Figure 3 represents the profiles 
of the water surface 5 s after the dam break in the 5: 1 case for two different CFL values. Figure 
4 is the equivalent for the 20: 1 case after 2.5 s of wave evolution. The available analytic solution 
appears again as a continuous line. 

In the next section a way of improving this situation by rendering the results globally 
conservative is proposed. 

3. RECOVERY OF CONSERVATION 

To introduce conservation into the semi-Lagrangian method, reference must be made first to 
the work of Bermejo and S tan i f~ r th . ' ~  Following an FCT approach,'**'9 they proposed a 
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0 0 I I -  25 50 75 100 
Distance x(m) 

0 I I -  0 25 50 75 100 

Distance x(m) 

Figure 3. Monotone cubic interpolation. N = 101. Dam break problem for a height ratio of 5: 1. Upper: CFL = 0.75. 
Lower: CFL = 1.75 

different method of producing schemes able to preserve the shape of the solution near strong 
gradients whilst maintaining high accuracy in smooth regions, without any special constraint 
on the interpolation. The basic points underlying this idea can be found in Reference 5. They 
are now outlined because they will be useful later on in the paper. 

A high-order monotone solution U M  at the new time level can be defined through a suitable 
combination of a high-order, possibly oscillatory, solution UH and a low-order, shape-preserving, 
solution UL as 

uy = a i u y  + (1 - a,)U!, ( 5 )  

with i = 1, N and 

The coefficients {a i}  are to be chosen as large as possible whilst maintaining monotonicity. 
Obviously a trivial solution exists when xi = 0, i = 1, N ,  corresponding to the already monotone 
UL. 

Denoting by U" the solution obtained at the previous time level and by { U", i} the set of 
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Figure 4. Monotone cubic interpolation. N = 101. Dam break problem for a height ratio of 20:l. Upper: CFL = 0.75. 
Lower: CFL = 1.75 

solution values used to interpolate at the foot of the characteristic passing through x i ,  the 
following inequalities provide adequate upper and lower bounds to the coefficients {q}: 

min({U", i ) ,  Uk)  ,< cliUy + (1 - ui)Uk ,< max({U", i } ,  Uk). (7) 

Equation (7) differs from the one given by Bermejo and Staniforth" only in that the value of 
the low-order solution has been included in the bounds. When UL is calculated using linear 
interpolation of the { U", i }  values for pure linear advection problems, the conditions reduce to 
those of Bermejo and Staniforth. For more general problems including source terms or when 
solving non-linear systems, the presence of the low-order solution in (7) is necessary to allow 
new controlled extrema to be generated by the low-order scheme. It is worth noting here that 
linear interpolation must be used with care when solving non-linear problems and it will be 
shown to be inadequate for non-linear systems with shocks. 

We now proceed to discuss the recovery of conservation and, for the sake of clarity, we shall 
do it in the scalar case. 

3.1 Scalar equations 

The set of optimal {a i )  satisfying (7) and providing a monotone and accurate solution will be 
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considered as upper bounds { a y ' }  for another choice of {ai) made to produce a monotone, 
accurate and conservative solution. 

In order to find the values 

leading to a conservative solution, the following condition must be imposed on the coefficients: 

P(x) dx = U"(X) dx = C. s s  (9) 

Here U" is the initial solution and C is in general a function of the time and of the boundary 
conditions. The best that can be done in many cases is, of course, to minimize the difference 
between the quantities in (9). 

The algorithm that is next proposed represents a direct way of obtaining a solution. It must 
be stressed that the result of seeking a suboptimal { a i }  to enforce conservation will sacrifice 
some accuracy in the results. 

Using (7) and defining S i  to be the area associated with the node i (this is just Ax in a regular 
1D mesh), (9) can be recast as 

1 Mi(UH - U!)Si = c - c UYSi = c*. 
i i 

Let us define 

pi = ( c r y  - UL)Si. 

Then the problem is to maximize the M'S subject to the condition 

and the constraints (7) and (8). 
For this purpose assume that 

c Ciyxpi > c*. 
i 

If we had equality in ( l l) ,  then the monotone and accurate solution would already be 
conservative. On the other hand, if the inequality were the other way round, some redefinitions 
( p i  = - p i ,  C* = -C*) could be performed without loss of generality to achieve the satisfaction 

The negative terms of the sum in (1 1) as well as those equal to zero are supplied with the 
of (1 1). 

highest possible coefficient in order to reduce as much as possible the size of the total, i.e. 

pi < 0 * mi = myax, iflag(i) = 1. 

In order to calculate the coefficients for the rest of the terms, an estimate can be made by defining 
a surplus as 

surplus = C* - C aiPi 
i/lag(i) = 1 
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and an average value of a as 

283 

If either the surplus is negative or all pi < 0, then there is no conservative solution and the best 
solution as regards conservation is given by the initial set-up of a's. In any other case the average 
value is compared with up"" for all the points with iflag(i) = 0 and all the values of the coefficients 
are set equal to the average if it does not exceed the upper bound. This may be expressed as 

vi, i f lag(i)  = 0, C(AV < ap"" 3 c(i = C(AV, i f lag(i)  = 1. 

If, on the contrary, the average value is greater than some of the up"", then only those coefficients 
are fixed and put equal to their maximum value: 

vi, i f lag(i)  = 0, a A V  > c(i = Myax, i f lag(i)  = 1. 

The rest of the points remain with $ag(i) = 0. 
A new evaluation of (12) and (13) is then performed with a modified number of terms in the 

sums. The algorithm ends when a value of aAV is found that does not exceed any of the tip"" or 
when all $ug(i) = 1. It works very well for scalar problems, as demonstrated in Reference 20. 

This problem can also be solved by linear programming methods. It can be posed in the form 
of minimizing 

where the unknowns are subject to the constraints. 

3.2. Systems of equations 

The present section is concerned with the application of the above technique to the 1D shallow 
water equations. The immediate generalization to systems of equations is to apply it separately 
to each of the conserved quantities, i.e. the described scalar procedure was used independently 
to conserve cross-section A and discharge Q in the solution of (1). 

In the first attempt, cubic Hermite polynomials and linear interpolation were used respectively 
as the high-order, UH, and low-order, UL, semi-Lagrangian solutions. The unreliability and 
inadequacy of the linear interpolation as a low-order monotone scheme for this kind of problem 
were soon realized. Results provided by the use of the linear interpolation semi-Lagrangian 
scheme as the lower-order solution for two different height ratios are displayed in Figures 5 and 6. 

This raised the point of the strong dependence of the quality of the results on the monotonicity 
of UL. Moreover, any interpolation scheme which used the information coming through the 
characteristics was likely to demonstrate the same behaviour across a shock. 

In order to overcome this difficulty without losing the advantages offered by semi-Lagrangian 
schemes, a generalization of the first-order Roe method,2' modified to allow large time steps, 
was e ~ p l o r e d ~ ~ . ~ ~  first in the scalar non-linear case and then adapted to systems of equations. 
The difference scheme is extended by explicitly handling the interactions of the solutions to the 
Riemann problems at each interface. It becomes stable for CFL > 1 and provides an accurate 
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Figure 5. Recovery of conservation: cubic and linear interpolation. N = 101. Dam break problem for a height ratio of 
5: 1 .  Upper: CFL = 0.75. Lower: CFL = 1.75 

and correct solution of shocks. In the case of a linear problem it reduces to a linear interpolation 
scheme. 

Provided that Roe's linearization is used to decouple the system (l), here expressed as 

aF A = -  au a~ -+ -=o ,  
at ax au ' 

an approximate matrix A* can be built whose eigenvalues (A', 1') and eigenvectors (el, e2)  satisfy 

6ui+ = ui+ - Ui = C akek, 6Fi+ 1,2 = Fi+ - Fi = A k k k  a e . 
k k 

Expressions for Ak, ak and ek can be found, for instance, in Reference 21. 
The basic idea is to calculate 6U at every interface and update the different k-waves according 

to the sign of their celerities and the values of the local CFL numbers. As an example, if at i+& 
for k = 1, A,!+ l ,z > 0, then each 6 U j ,  j = 1,2, will affect the corresponding variable U j  so that 

a'ef is added to i + 1, ..., i + p*, (v' - pl)alej' is added to i + p' + 1, 
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Figure 6 .  Recovery of conservation: cubic and linear interpolation. N = 101. Dam break problem for a height ratio of 
20: 1 .  Upper: CFL = 0.75. Lower CFL = 1.75 

where 

In order to avoid the appearance of non-physical shocks, rarefaction waves are split24 and 
propagated in both directions. 

The improvement achieved with the use of this technique as the low-order solution for the 
dam break test case can be observed in Figures 7 and 8. 

The application of the same procedure to the water hammer problem brought to light new 
difficulties arising from the strategy of enforcing conservation separately in both variables. The 
consequence of having a different set of coefficients (ai> for each variable is that a slight phase 
shift between them appears which is more noticeable in this case test, because there is an 
interaction with the boundaries which is not present in the dam break problem. Examples of 
the distortion generated by this approach can be observed in Figure 9. 

Thus the next question is: can a common set of a’s be used for both variables whilst still 
conserving both variables? As a partial answer to this question, an extension of the recovery- 
of-conservation algorithm will be proposed in the next section and the numerical results of its 
implementation will be presented. 
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Figure 7. Recovery of conservation: cubic interpolation and Roe's scheme. N = 101. Dam break problem for a height 
ratio of 5: 1. Upper: CFL = 0.75. Lower: CFL = 1.75 

4. IN-PHASE CONSERVATION 

There is some freedom in the way of solving the problem of finding common coefficients for 
both variables. The simplest solution is to enforce conservation in one of them, say the variable 
F1, and applying the set of coefficients {ct:')} to the variable F2.  This obviously removes the 
phase shift and ensures conservation in F 1 .  Conservation in F 2 ,  although improved, is 
nevertheless not enforced in this way. 

A better way is to require conservation in one variable whilst trying to minimize the error in 
conservation in the other, using a common set of coefficients which will be called {a:} from now 
on. To do this, the scalar mechanism described in Section 3 is applied to one of the variables, 
F1, up to the moment at which, having fixed some of the coefficients a{'), a suitable value ctAV 

for the rest of the points is found which ensures F1 conservation. From that moment the 
algorithm differs mainly in that the variable F 2  will also be involved in the calculation of the 
optimal M"S. 

To begin with, the new coefficients are defined as 

a: ' )  if $lay(i) = 1, 
if i f lag(i)  = 0, 

a; = 
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Figure 8. Recovery of conservation: cubic interpolation and Roe’s scheme. N = 101. Dam break problem for a height 
ratio of 20: 1 .  Upper: CFL = 0.75. Lower: CFL = 1.75 
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Figure 9. Recovery of conservation: cubic interpolation and Roe’s scheme. Water hammer problem. N = 37, 
CFL = 1.5 
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so that from conservation in F1 the following equality holds: 

However, now we have in general 

and our problem is to approach as closely as possible the equality in (15) without violating (14). 
In the first sum in (15) the terms corresponding to @ag(i) = 1 are fixed. Those with iJEag(i) = 0 

will allow us to carry out some adjustments. They will be grouped so that (15) is expressed as 

so + s, + SL # c2, 
where 

so = c a ; p ,  s, = c a;#’, SL = AX C F!2)L, 
i f l a g ( i )  = 0 i f l a g ( i )  = 1 i 

or even more briefly as 

So # target, 

where target = C2 - S, - S,. 
Suppose that 

So > target (16) 

(otherwise (16) could always be arranged by redefining C2, {/?j2)} and SL). Then the objective is 
to minimize So subject to (16), (14) and the conditions (8) imposed by the upper and lower limits 
on the values of the coefficients. 

For that purpose the set of values { ~ ~ ” }  with ifiag(i) = 0 can be ordered so that the smallest 
(corresponding to i = is) and largest (corresponding to i = ib) values can be selected. We would 
like to reduce a:b as much as possible in order to diminish the weight of the biggest term in S o ,  
taking into account that 

(17) a;J{;) + U;Jg’ = T‘” 
must hold. 

If it happens that 

gFaxglj) > T(’),  

then U& can be completely removed from (17), so that 

= 0, iflag(ib) = 1, 
7’‘’) 

UF = ~ iflag(is) = 0. 
IS ’ 

Otherwise can be supplied with the largest possible value: 

a:s = u r n ,  iflag(is) = 1, 



SEMI-LAGRANGIAN METHOD FOR SHALLOW WATER EQUATIONS 289 

In both cases is reduced and as increased. With a different number of points at which 
$ag(i) = 0, the sums So and S, are re-evaluated to see whether the inequality (16) still maintains 
its sign. If so, the process is repeated with another couple until either all iflag(i) = 1 or (16) 
changes its sign. 

If a certain couple of values (is, ib) produces 

So < target, 

it means that an adequate combination of 
variables. Suitable coefficients can be calculated from the two conditions they must fulfil, namely 

and /I!;) will provide conservation in both 

a:spib) + a7b/j$) = T‘”, a7s/j!z) + a:bpiz) = T ( ~ ) ,  

where 

p’ = c2 - s L - c a;/jy’ 
i # is, ib 

always constrained by their limiting values. Testing must be continually performed to ensure 
that the a‘s do not violate the constraints. 

This problem is again a good candidate for solution by a simple linear programming 
procedure. In this case it  would consist of minimizing the sum over the points with @ag(i) = 0, i.e. 

- 1 a:, 

with the a; subject to the constraints 

0 < a: < aYX,  ~r:/j!” = RS1, C a:/jj” >, target, 
1 i 

where RS1 = C1 - AXC~F:’’~. 
The results of the performance of the Hermite cubic polynomial interpolation semi-Lagrangian 

scheme supplied with an in-phase conservation recovery using Roe’s scheme as the low-order 
solution are illustrated in Figures 1Cb12. The improvement introduced by the in-phase algorithm 
over the previous way of recovering conservation for the water hammer test case is evident from 
Figures 10 and 11. We remark that the results are the same whatever variable is used as F1 to 
enforce conservation, because this problem is symmetric in both variables H and V .  

In order to summarize as well as quantitatively compare the methods considered in this paper, 
the measures of CPU time consumed on a SUN SPARC2 workstation and accuracy achieved 
by them in two particular cases have been tabulated. The accuracy has been estimated by means 
of an L,-norm defined as 

where ue and U” represent the exact and numerical solutions respectively. 
First, the results for the linear water hammer problem on four different grids using CFL= 0.5 

are contained in Tables I and 11. The abbreviations in the first column stand for: HP, Hermite 
polynomials; MHP, monotone Hermite polynomials; IRC, independent recovery of conserva- 
tion; IRCLP, linear programming of the independent recovery of conservation; IPRC, in-phase 
recovery of conservation; IPRCLP, linear programming of the in-phase recovery of conservation. 
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1 3  5 7 9 11 13 

Grid point I 

Figure 10. In-phase recovery of conservation: cubic interpolation and Roe’s scheme. Water hammer problem. N = 13, 
CFL = 1.5. Upper: downstream head variation with time. Lower: head profiles at various times 

Table I. CPU time used by the different methods in the 
linear problem 

N = 1 2  N = 2 4  N = 4 8  N = 9 6  
_ _ _ _ _ ~  

HP 3.1 11.7 44.7 175.3 
MHP 3.2 12.4 48.7 193.8 
IRC 5.3 19.3 73.8 288.7 
IRCLP 8.7 243  88.6 354.6 
IPRC 6.2 21.9 83.5 3 16.9 
IPRCLP 7.8 21.4 68.8 229.0 

The equivalent tables for the solution of the non-linear dam break problem in the case of an 
initial height ratio of 5:l using CFL= 0.8 are presented next (Tables 111-IV). 

The basic conservation recovery algorithm represents a significant saving over the linear 
programming solution. Compared with the MHP scheme, which they both use as starting point, 
our algorithm is twice as fast for the linear problem (see Table I). For the non-linear problem 
the savings are less spectacular, but the linear programming technique is still roughly 50 per 
cent faster. 
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Figure 1 1 .  In-phase recovery of conservation: cubic interpolation and Roe's scheme. Water hammer problem. N = 37, 
CFL = 1.5. Upper: downstream head variation with time. Lower: head profiles at various times 

Table 11. &-error in H in the linear problem 

N = 1 2  N = 2 4  N = 4 8  N = 9 6  

HP 0.629 0.384 0332 0269 
MHP 0.795 0-489 0387 0.304 
IRC 0.684 0.535 0.4 1 5 0.322 
IRCLP 0.7 18 0.556 0.426 0.327 
IPRC 0.857 0.629 0.46 1 0.348 
IPRCLP 0.832 0.625 0.456 0.365 

With the in-phase recovery the linear programming version is generally but not always faster. 
Since the in-phase recovery algorithm is also more difficult to programme, we feel that the linear 
programming problem is the one to solve in this case when linear programming routines are 
available. Otherwise the algorithm presented here is a useful alternative. 

In Reference 10 it was shown that the basic semi-Lagrangian method with a cubic interpolant 
was better than other schemes used in the hydraulics literature for the water hammer problem. 
We see in Table I1 that some accurcy is lost in gaining conservation, although the loss is 
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0 25 50 75 100 
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Figure 12. In-phase recovery of conservation: cubic interpolation and Roe’s scheme. N = 101. Dam break problem. 
CFL = 1.75. Upper: height ratio of 5.1. Lower: height ratio of 20:l 

Table 111. CPU time used by the different methods in the non-linear problem 

N = 5 0  N = 1 0 0  N = 2 0 0  N = 4 0 0  N = 8 0 0  

MHP 1.1 5.6 30.6 190.7 1051.3 
IRC 1.6 7.7 39.0 226.4 1467.7 
IRCLP 2.1 9.3 44.1 244.0 1549.0 
IPRC 1.8 8.4 41.5 229.1 1469.1 
IPRCLP 2.0 8.9 40.9 220.8 14467 

somewhat smaller than the errors incurred in achieving monotonicity. It is worth mentioning 
here that the difference in errors for the IRC and IRCLP methods are caused by the fact that 
the solution to the linear programming problem is not unique. They could, if desired, be forced 
to produce the same answers. 

The in-phase conservation has larger errors because smaller values of amax must be taken, the 
method then using less of the higher-order scheme. 

The reason for using these recovery techniques becomes more evident in Tables IV and V, 
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Table IV. ,!,,-error in A in the non-linear problem 

N = 5 0  N = 1 0 0  N = 2 0 0  N = 4 0 0  N = 8 0 0  

MHP 1.09 1.909 1.937 1.961 1.914 
IRC 1.069 0.438 0.295 0.328 0.125 
IRCLP 1.220 0.409 0.383 0.454 0.230 
IPRC 0.953 0.594 0.500 0,448 0.309 
IPRCLP 0.940 0.699 0-623 0.368 0.267 
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where we see that the monotone version of the semi-Lagrangian method is not converging to 
the correct answer. The various recovery algorithms cure this problem. 

5. CONCLUSIONS 

Monotone Hermite cubic polynomials with derivatives calculated explicitly from the neighbour- 
ing points seem a very efficient method of interpolation in the context of semi-Lagrangian 
schemes. 

A new recovery-of-conservation procedure has been proposed to render the scheme much 
more suited to hydraulic problems with shocks. It is based on an FCT approach and relies on 
the adequate choice of a set of coefficients combining a high- and a low-order method. Two 
hydraulic problems have been used as test cases, water hammer and dam break. In the latter 
case special care is needed with the low-order solution and we have shown the advantages of 
using Leveque’s large time step version of Roe’s scheme for this purpose. 

In this paper we have been concerned with 1D shallow water equations and so have made 
use of Riemann invariants. Most of the concepts presented here extend, nevertheless, to higher 
dimensions and to large systems. The semi-Lagrangian approach and the basic independent 
recovery algorithms work equally well in higher  dimension^.^^-^^ They can clearly be applied 
to arbitrarily large systems. The in-phase conservation, in principle, could also be extended, but 
there is a real danger of running out of degrees of freedom before conservation in all required 
variables is achieved. 

Although the result is not a shock-capturing technique, it is able to correctly reproduce the 
discontinuities of interest in common engineering pipe calculations, as we have shown, also 
allowing the use of time steps not restricted by the usual CFL stability conditions. 
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